
1 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Creating Java Programs with

Greenfoot

Defining Methods

2 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Overview

This lesson covers the following topics:

• Describe effective placement of methods in a super or

subclass

• Simplify programming by creating and calling defined

methods

Defining Methods

3 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Efficient Placement of Methods

• At times, many lines of code are required to program a

behavior.

• For example, you may want to program an instance to

eat other objects, or turn when it reaches the edge of the

world.

• Define new methods to save time and lines of code.

– Define a new method for an action below the act method.

– Call the new method in the act method.

– Define the method in the superclass if you want its

subclasses to automatically inherit the method.

Defining Methods

4 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Defined Methods

• Defined methods are new methods created by the

programmer.

• These methods:

– Can be executed immediately, or stored and called later.

– Do not change the behavior of the class when stored.

– Separate code into shorter methods, making it easier to

read.

Defining Methods

Defined methods create a new method that a class did not

already possess. These methods are written in the class's

source code below the act method.

5 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Steps to Define a New Method

1. Select a name for the method.

2. Open the Code editor for the class that will use the method.

3. Add the code for the method definition below the act method.

4. Call this new method from the act method, or store it for use later.

Defining Methods

6 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Turn at the Edge of the World

• Problem:

– Instances stop and are unable to move when they reach

the edge of the world.

– Instances should turn and move when they reach the edge

of the world.

• Solution:

– Define a method in the Animal superclass to give all Animal

subclasses the ability to turn when they reach the edge of

the world.

– Call the new method in the subclasses that should be able

to turn and move at the edge of the world.

Defining Methods

7 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Test an Object's Position in the World

• To test if an object is near the edge of the world, this

requires:

– Multiple boolean expressions to express if one or both

conditions are true or false.

– Logic operators to connect the boolean expressions used

to evaluate a condition.

Defining Methods

8 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Logic Operators

Defining Methods

Logic Operator Means Definition

Exclamation Mark

(!)
NOT

Reverses the value of a boolean expression (if b

is true, !b is false. If b is false, !b is true).

Double ampersand

(&&)
AND

Combines two boolean values, and returns a

boolean value which is true if and only if both of

its operands are true.

Two lines (II) OR
Combines two boolean variables or expressions

and returns a result that is true if either or both

of its operands are true.

Logic operators can be used to combine multiple boolean

expressions into one boolean expression.

9 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Create the Animal Superclass

Defining Methods

Before creating the defined methods, create a new

subclass of the Actor class named Animal. This class has

no image and will not have instances that act in the

scenario, but will hold some defined methods that other

subclasses will inherit.

10 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Create the Animal Subclasses

Defining Methods

Create subclasses of the Animal superclass that will have

instances that act in the scenario. In this example, a Duke

subclass and Code subclass were added for a game

where Duke, the Java mascot, eats Code objects.

11 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Define atWorldEdge Method in Superclass

Defining Methods

Open the Code editor for the Animal superclass. Write the

code for the atWorldEdge method, below the act method.

Compile the code and then close the Code editor.

12 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Methods Used in atWorldEdge Method

Defining Methods

The methods used in atWorldEdge include:

– getX: An Actor method that returns the x-coordinate of the

actor's current location.

– getY: An Actor method that returns the y-coordinate of the

actor's current location.

– getWorld: An Actor method that returns the world that this

actor lives in.

– getHeight: A GreenfootImage class method that returns the

height of the image.

– getWidth: A GreenfootImage class method that returns the

width of the image.

– ||: Symbol for a conditional statement that means “OR”.

13 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Call atWorldEdge Method in Subclass

• Open the Code editor for an Animal subclass.

• Create an IF statement that calls the atWorldEdge

method as a condition. The condition tells the instance

how many degrees to turn if the condition is true.

• Compile the code and run the scenario to test it.

Defining Methods

14 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Class Documentation

Defining Methods

The Animal class documentation shows the new

atWorldEdge method after its defined. All subclasses of

the Animal superclass inherit this method.

15 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Defined Method to Eat Objects

• You can write code in your game so a predator object is

able to eat prey objects.

• Create a defined method in the act method of the Animal

superclass called canSee to enable objects of Animal

subclasses to eat other objects.

• To create this defined method:

– Declare a variable for the prey.

– Use an assignment operator to set the value of the variable

equal to the return value of the getOneObjectAtOffset

method.

Defining Methods

16 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Define canSee Method

Defining Methods

Define the canSee Method in the Animal superclass. This

method returns true if the predator object (Duke) lands on

a prey object (Code).

17 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

getOneObjectAtOffset Method

Defining Methods

• The canSee Method uses the getOneObjectAtOffset

method.

– This method returns one object that is located at the

specified cell (relative to this objects location).

– Review this method in the Actor documentation.

18 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Define eat Method

Defining Methods

Create a defined method in the Animal superclass called

eat. This method will instruct Duke to eat the Code object

if he lands on it.

19 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Define lookForCode Method

Defining Methods

Create a defined method in the animal subclass (Duke

class) called lookForCode that checks if Duke has landed

on a Code object. If so, Duke will eat the Code object.

20 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Call lookForCode in Act Method

Defining Methods

Call the new lookForCode method in Duke's act method.

Run the animation to test the code.

21 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Terminology

Key terms used in this lesson included:

• Defined methods

Defining Methods

22 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Summary

In this lesson, you should have learned how to:

• Describe effective placement of methods in a super or

subclass

• Simplify programming by creating and calling defined

methods

Defining Methods

23 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Practice

The exercises for this lesson cover the following topics:

• Examining and simplifying programming by creating and

calling defined methods

Defining Methods

