
1 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Creating Java Programs with

Greenfoot

Understanding Abstraction

2 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Overview

This lesson covers the following topics:

• Define abstraction and provide an example of when it is

used

Understanding Abstraction

3 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstraction

• You can program a new instance to perform a single,

specific task, such as play a sound when a specific

keyboard key is pressed, or display a set of questions

and answers every time a game is started.

• To create programs on a larger scale, for example one

that creates 10 objects that each perform different

actions, you need to write programming statements that

let you repeatedly create objects that perform different

tasks, by just providing the specifics for the differences.

Understanding Abstraction

4 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstraction Example

• For example, if you are going to create 10 objects

programmatically, all placed in different locations, it is

inefficient to write 10 lines of code for each object.

• Instead, you abstract the code and write more generic

statements to handle the creation and positioning of the

objects.

Understanding Abstraction

5 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstraction Principle

• Abstraction aims to reduce duplication of information in a

program by making use of abstractions.

• The abstraction principle can be a general thought such

as “don’t repeat yourself.”

• For example, you want to create a game board that has

blocks, trees, sticks, and widgits.

– You do not need to write repetitive programming

statements to add each of these items.

– Instead, you can abstract the procedure to simply add

objects to a game board in a specific location.

Understanding Abstraction

6 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstraction Pseudocode Example

• For example, you will display a Duke image and when

called, it is either going to point its hand up to the sky,

out to the side, or down to the ground.

• Your code will display Duke and specify the direction to

point. Here is the pseudocode:

– Create new Duke (point left, position x16, y20, z0)

– Create new Duke (point up, position x34, y52, z0)

– Create new Duke (point down, position x58, y71, z0)

Understanding Abstraction

7 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstraction Pseudocode Example

• Imagine the code needed for 300 Duke images.

– To implement abstraction, create a procedure that creates

a new object that is positioned where needed and displays

the appropriate image.

• Call Procedure newObject (image, position)

Understanding Abstraction

8 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstraction Techniques

• Abstraction occurs many ways in programming.

– One technique is to abstract programming code using

variables and parameters to pass different types of

information to a statement.

– Another technique is to identify similar programming

statements in different parts of a program that can be

implemented in just one place by abstracting out the

varying parts.

Understanding Abstraction

9 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstraction Techniques Example

• For example, in a game tracking points, you may have

an action decrease points from a running total and in

another section of a game you may have elapsed time

values decrease points from a running total.

• You could use abstraction to have an event decrease

points by specifying the type of event and the amount to

decrease from the running total.

Understanding Abstraction

10 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Constructor Using Variables

In this example, the Duke constructor has variables

defined to store the key and sound values.

Understanding Abstraction

11 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Programming to Place Instances

• After sound and key variables are defined in a

constructor, write programming code to automatically

add instances of the class to the world.

• The following programming statement added to the

Duke class:

– Creates a new instance of Duke each time DukeWorld is

re-initialized, with a specific key and sound file.

– Places the instance in DukeWorld at the specific x and y

coordinates.

Understanding Abstraction

addObject (new Duke (“k”, “test.wav”), 150, 150);

12 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Constructor Example

Examine the addObject statement in the DukeWorld

constructor.

Understanding Abstraction

13 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstract Code to a Method

• You can anticipate abstraction during the design phase

of a project, or you can examine programming code to

identify statements that would benefit from abstraction.

• Often times you will recognize an opportunity to abstract

programming statements when writing lines of code that

appear repetitive.

Understanding Abstraction

14 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstract Code to a Method Example

Examine the code below and on the following slide.

Understanding Abstraction

public class ZombieWorld extends world
{
 /**Constructor creates new world and initial game objects
 */
 public ZombieWorld()
 {
 super(600, 400, 1);
 addObject (new Zombie (“1”, “1.wav”), 1, 10);
 addObject (new Zombie (“2”, “2.wav”), 2, 10);
 addObject (new Zombie (“3”, “3.wav”), 3, 10);
 addObject (new Zombie (“4”, “4.wav”), 4, 10);
 addObject (new Zombie (“5”, “5.wav”), 5, 10);
 addObject (new Zombie (“6”, “6.wav”), 6, 10);
 addObject (new Zombie (“7”, “7.wav”), 7, 10);
 addObject (new Zombie (“8”, “8.wav”), 8, 10);
 addObject (new Zombie (“9”, “9.wav”), 9, 10);
 }
}

15 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Abstract Code to a Method Example

Understanding Abstraction

public class ZombieWorld extends world
{
 /**Declare constructor variables
 */
 public string varKey;
 public string varSound;
 public int varX;
 int varY=10;

 /**Constructor creates new world and initial game objects
 */

 public ZombieWorld()
 {
 super(600, 400, 1);
 for (int i=1; i<10; i++) {
 addObject (new Zombie (varKey=i, varSound=i+”.wav”) varX, varY);)
 }
}

16 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Simple Abstraction of Code

• What if you had little knowledge of Greenfoot or

programming, and wanted to create a game to move a

baby around the screen?

– You could simplify how to move an Actor object around the

screen by creating a simple set of movement methods:

moveRight, moveLeft, moveUp and moveDown.

– This provides a simpler abstraction than the standard

Greenfoot API with its built-in setLocation and getX/getY

methods.

Understanding Abstraction

17 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Create Baby Subclass

• Create a subclass of the Actor class called Movement

that would allow the player to tell the Baby actor to move

in a desired direction.

• Add the following code to Movement which will set the

amount of movement each time a move is required.

Understanding Abstraction

import greenfoot.*;
// An actor superclass that provides movement in four directions.

public class Movements extends Actor {

private static final int speed = 4;

}

18 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Create Move Methods for Baby Subclass

Then, add the following move methods to make the

movement. These methods simplify and Abstract the

Greenfoot API of getX/getY.

Understanding Abstraction

public void moveRight()
{
 setLocation (getX() + speed, getY());
}
public void moveLeft()
{
 setLocation (getX() - speed, getY());
}

public void moveUp()
{
 setLocation (getX(), getY() - speed);
}
public void moveDown()
{
 setLocation (getX(), getY() + speed);
}

19 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Code the act Method

• Code the act method of the Baby Actor class so its

instances move when the arrow keys are pressed.

• This abstraction hides and automates the more complex

code, only showing moveLeft, moveRight, etc.

Understanding Abstraction

public void act()
{
 if (Greenfoot.isKeyDown("left"))
 {
 moveLeft();
 }

 if (Greenfoot.isKeyDown("right"))
 {
 moveRight();
 }
}

20 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Terminology

Key terms used in this lesson included:

• Abstraction

Understanding Abstraction

21 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Summary

In this lesson, you should have learned how to:

• Define abstraction and provide an example of when it is

used

Understanding Abstraction

22 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Practice

The exercises for this lesson cover the following topics:

• Actor abstraction

• Journaling abstraction

Understanding Abstraction

