Creating Java Programs with
Greenfoot

Putting it All Together with Greenfoot

(@) =J-\a =8 ACADEMY

Putting it All Together with Greenfoot

(@) =y \e@l =8 ACADEMY

Overview

This lesson covers the following topics:
* Apply Greenfoot knowledge by creating a Java game

2 [Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Putting It All Together

* In this lesson, you will review a case study and apply the
skills you have learned in Greenfoot to program a
Blackjack (or 21's) game.

* Open JF_scenarioB and save a copy to your computer.
« Save frequently as you progress through the lesson.

eeeeeeeee

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Components of BlackJack Scenario

» The BlackJack scenario includes the following classes:

— One World class:
» Table: BlackJack table to play the game on.
— Three Actor classes:

* Deck: Contains the behavior to deal the deck of cards to the
dealer and players.

 Card: Contains the behaviors associated with a playing card.

 Button: After the player selects at least two cards, the player
clicks this button to play the game and display the winner.

4 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Create Variables in Card Class

* First, create the variables to associate to a Card.

« A Card instance will have the following properties:
— A suit (hearts, clubs, spades, or diamonds).
— Avalue in the range from 2 to Ace.
— An associated numeric value in the range 2 to 11.
— The abillity to be flipped or not flipped.

eeeeeeeee

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create the Card Variables

Open the code editor for the Card actor class. Create the
variables as shown below to define the possible suits,
numbers, and colors for the cards.

public class Card extends Actor
{

/** The suits a card can belong to */
public enum Suit {CLUBS, HEARTS, SPADES, DIAMONDS):

/** The numbers a card can take */
public enum Value {

ACE(1l), TWO(2), THREE(3), FOUR(4), FIVE(S5), SIX(6), SEVEN(7), EIGHT(8), NINE(9), TEN{1l0), JACK{(l0), QUEEN({1l0), KING(l0):
private int numValue;

Value{int numValue) {
this.numnValue = nun¥Value;
}
}
/** The colours a card can be */
public enum Colour {RED, ELUE}

6 [Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Enter Remaining Card Variables

Enter the remaining variables as shown below. Save and
compile the scenatrio.

%% The colouts a card can be *f
public ermm Colour {FED, ELUE!}

protected static final 3tring CARD TMAGE LOCATION = "images/cards/";
private Colour colour:

private Suit suit;

private Value wvalue;

priwvate boolean f£lipped;

priwvate boolean blank:

7] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Enum Variables

* You may have noticed as you entered the variables that
enum variables were used in this class.

» These variables are similar to an Array. They act like a
list of values from which we can extract the value and

position.

public class Card extends Actor
{
A%% The suits a card can belong to */
public emam Suit {CLUES, HEARTS, SPADES, DIAMONDS): I

A%% The nmambers a card can take */

public enum Walue |
ACE(1l1), TWo(Z), THREE(3), FOUR(4), FIVE(5), 3IX(6), SEVEN(7), EIGHT(S), NINE(2), TEN(l0O), JACK(l0), QUEEM{10), KING(l0O):

priwate int nmamWValue:

Value (int rmunValue) {
thiz.mmValue = numValue;

'
'

S*% The colours a card can be &/
| public ernum Colour {RED, BLUE: |

8 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Card Constructors

» This game will involve both blank and non-blank cards.

* The constructors for the Card class will include:
— A blank card constructor which will show a face down card.
— A constructor which show a face up card.

9 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create Card Constructors

Create the following two Card constructors below the
variables you created previously to generate the blank
and non-blank cards. Save and compile the scenario.

/‘tt
* Generate a blank card for placement in rows
* [@param blank whether it is an empty spaceitrue) or a flipped cardifalse)
=,
public Cardiboolean blank) {
if (blank) {
this.blank = blank;
setInage (new GreenfootImage (“images/cards/enpty.png™));

lelse
{
setInage (new GreenfootImage ("images/cards/blueflip.png™)):
}
¥
/‘ﬁ‘*

* Generate a card with a colour, suit, and walue
* [@param colour the colour of the card
* [@param walue the walue of the card
* [@param suit the suit of the card
* [@param flipped true if the card is face down, false otherwise
7,
public Card(Colour colour, Value walue, Suit suit, boolean flipped) {
this.colour = colour;
this.value = wvalue;
this.suit = suit;
this.flipped = flipped;
draw()

}

10 [Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create the draw Method

Next, create the draw method. This will select and draw
the image of the card based on its suit, value, and color.
Save and compile the scenario.

J.-'ww
% Zelect the image of the card baszsed on itz suit, walue, and colour
* and draw it.
i
protected woid drawi() {
Jtring fileName = CARD IMAGE LOCATION:

if(flipped) {
fileName += colour;
fileName += "£lip™:
'
else {
fileName += walue;
filelame += suit;

i

fileName += ".png™:
fileName = fileName.toLowerCasel(]:
setInacge (hew GreenfootImage (£ileName)) :

'

11 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create Methods to Return Card Information

Next, create the methods shown here and on the next
slide to return information about the cards: if the card is
flipped, color, value, numeric value, and suit. Save and
compile the scenario when finished.

* Set whether the card is flipped owver or not
* [@param flipped true if card is face down, false otherwise
L7
public void setFlipped{boolean flipped) {
this.flipped = flipped;
draw();
}

/#*
* Determine whether the card is flipped ower or not
* [@return true if the card is face down, false otherwise
A7
public boolean isFlipped{){
return flipped:
}

/1:?.‘

* Get the colour of the card

* [@return the colour of the card

A7

public Colour getColour() {
return colour;

}

12 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create Remaining Card Class Methods

,.o"ﬁ‘#
* Get the value of the carﬂ
* @return the value of the card
a7
public Value getWValue() {
return value;

,.t"ﬁ‘#
* Get the numeric wvalue of the card
* @return the value of the card
7
public int getNumValue() {
return value.nunValue;

/mr
* Get the suit of the card
* @return the suit of the card
a7
public Suit getSuit() {
return suit;

13] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Create Variables for Deck of Cards

* Next, in the Deck class, you will create the variables that
will be associated to the deck of cards.

» The deck of cards:
— Will hold 52 instances of the Card object.

— Will store them in an ArrayList (similar to an array, but more
flexible when adding information).

eeeeeeeee

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Deck ArrayList and Variables

Open the Deck class. Create the ArrayList and variables
as shown below. Save and compile the scenatrio.

public class Deck extends Actor
{
private Arraylist<£Card> cards;
/%% The number of sets of each of the suits. */
private int spades, clubs, hearts, diamonds;
private Card.Colour colour;
/*% The location of the picture of an empty deck (outline of a deck.) */
private static final String EMPTY DECK = "empty.png";
private int showNuw;

15] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Deck Constructor

Next, below the variables, create the Deck constructor.
This will create 52 cards of different values and suits and
store them in the ArrayList. Save the scenario, but do not
compile it.

_."'**
* Create a customised deck of a certain colour
* [@param colour the colour of the deck and the suits required
B
rublic Deck(Card.Colour colour, int spaces, int clubs, int hearts, int diamonds)
{
this.colour = colour;
this.diamonds = diamonds;
this.clubs = clubs;
thiz.spades = spades;
this.hearts = hearts;
getColour():
£ill():
shuffler):
|

16 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Deck Behaviors

* Next, code the following behaviors for the Deck. These
will be inherited by all Deck instances (although you will

only use one deck).

* Behaviors are as follows:
— Fill the deck.
— Shuffle the deck.
— Set the color of the deck.

eeeeeeeee

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create fill and shuffle Methods

In the Deck class, create the fill and shuffle methods.

’f'ﬁ't

* Fill the deck with a complete set of cards. Get rid of any cards
% still in the deck.
R

public woid £ill()

{
cards = new ArrayList<£LCard>();
for(Card.Suit suit : Card.Suit.values()) {
for(Card.Value walue : Card.Value.values()){
cards.add (new Card(colour, walue, suit, false)):;
}
}
setColour():;
}
’,f'ﬁ't
* Shuffle the deck
37
public woid shuffle()
{
Collections.shuffle(cards);
}

18] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create setColour Method

Below the shuffle method, create the setColour method.

};'314‘
* Set the deck to a certain colour
L
private woid setColour()
{
if {colour==Card.Colour.BLUE) {
setInage (new GreenfootImage (“images/cards/blueflip.png™));

}

else {

setInage (new GreenfootImage ("images/cards/redflip.png™)):

}

19] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create drawCard and getSize Methods

Beneath the setColour method, create the drawCard and
getSize methods.

J,I'?f?f
* Draw a card from the deck.
[dreturn the card that's been drawm, or null if no cards are lefr.
e
public Card drawCardi)
{
if(gethize()==0) return null;
Card card = cards.get(0);
cards. remove [card) ;
ifigetiize()l==0] {
getImage (new GreenfootImage (Card. CARD TMAGE LOCATION+EMPTY DECE)) :
}
return card;

'

J,I'?f?f
* Get the size of the deck
* [return the number of cards left in the deck
Ly
public int get3izel()
{
return cards.sizel):

'

20 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create drawFlippedCard Method

Beneath the getSize method, create the drawFlippedCard
method. Save and compile the scenario.

J,I'?f?f
* Draw a card from the deck but £lip it
[dreturn the card that's been drawm, or null if no cards are left.
e
public Card drawFlippedCard()
{
if(getiize()==0] return nuall:
Card card = cards.get(0);:
cards. remove [card) ;
if(getiize()==0] {
getImage (new GreenfootImage (Card. CARD TMAGE LOCATIONHEMPTY DECK)) :
'

return card;

21 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Creating the Gameplay

* The objects have been created and populated with
variables, methods and behaviors.

» The next step Is to create the following gameplay
behaviors in the Table class:
— The dealer takes a hand, which is hidden from the player.

— The player can then select up to 5 cards aiming to score as
close to 21 as possible.

— When the player is ready to check their cards against the
dealer, they click the Play Cards button.

— The dealers hand is shown and the winner of that hand
declared.

eeeeeeeee

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Table Variables

* In the Table class, you will create the variables that will
be associated to the Table and used in gameplay.

* You will use Arrays to hold the player and dealer hands,
as well as a number of counters to control the gameplay.

23 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create Table Variables

Create the following variables in the Table class. Save and
compile the scenatrio.

public class Table extends World
{

publiéﬁbégﬁeﬁainbeck;

public Button plevButten;
pﬁbiighcgig’cgfd,ﬁiaﬁéééié;dealerl,dealerZ,placeCard,tempCard;
pu;liﬁ é;régiH;a;éGrid = new Card[5]:

public Card] blankrid = new Card [5];
ﬁéﬁiiéﬁéardgjgae;iégéard = new Card[5]:

public int dealerCount
public int playerCount
public int dealerTotal
public int playerTotal

oo o
A T AT =

24] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Setting Up the BlackJack Table

* The BlackJack table (the Table class) requires the
following set up each time the scenario is initialized:
— The deck of cards to draw from.

— Five spaces to hold the dealer cards.
— Five spaces to hold the players cards.
— A button to end the round and begin the card checking.

* This set up should take place automatically each time
the scenario is initialized.

eeeeeeeee

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Edit Table Class

* Open the code editor for the Table class and edit the
Table constructor to increase the playing surface area:

Super (600, 400, 1);
within the public Table() { method to

Super (800, 600, 1);

* Then, enter the code shown on the following slide in the
Table constructor to construct the objects on the table.

* When finished, save the scenario, but do not compile.

26 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Table Constructor

/'ka‘
* Constructor for objects of class Table.
*
A7
public Table()
{
‘/Create a new world with 600x400 cells with a cell size of 1xl pixels.

super (800, 600, 1)

fCreate the k of cards to draw from
mainDeck = new Deck(Card.Colour.ELUE, 1, 1, 1, 1);
addObject{mainDeck, 500, 500):

=1

lay cards button which when pressed will check player cards agains

//Add the play c t
playButton = new Button();
playButton. setInage (“images/playcard.png™);
addObjecti{playButton, 570, 150);
//Draw the dealers hand of cards
dealerHand() ;
/i%et up the spaces for the players hand of cards
for (int row = 0; row < 5; row++){
/fcard = new Card(Blank=true):;
cardGrid[row] = new Carditrue);
addObject{cardGrid[row], 100 + 90%row+l, 150);

f/5tart the scenario and awalt player respo
Greenfoot.starti):

}

27] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Coding Dealer Gameplay

 Specifications for the BlackJack dealer:
— Fully automated card dealing.

— Results in a hand of cards for the dealer which may be
more than 21 but never less than 15.

— Two cards will be drawn and if they are less than 15,
another will be drawn until the total is greater than 15.

— The number of cards drawn will be shown to the player but
they will be face down.

eeeeeeeee

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create dealerHand Method

Beneath the Table constructor, create the dealerHand
method shown on this slide and the next slide to code the
dealer gameplay. Save and compile the scenario.

public woid dealerHand()
{

dealerCard[0] = mainDeck.drawCard();
dealerCard[l] = mainDeck.drawCard():
dealerTotal = dealerCard[0].getNunValue() + dealerCard[l].getNunValue();

if (dealerTotal!=21)
{
while((dealerTotal < 15) && (dealerCount < 5)){
dealerCard[dealerCount] = mainDeck.drawCard()’
dealerCount++;

for (int row = 2; row <dealerCount; row+t){
dealerTotal = dealerTotal + dealerCard[row].getNumValue();
}
}
}

29 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Create dealerHand Method

blank cards for remaining dealer cards

for (int row = dealerCount; row < 5; row++){
dealerCard[row] = new Carditrue):;

fi/5et and place turned cards for number of dealer cards
for (int row = 0; row < dealerCount; row++){
‘card = new Card(Blank=true):;

blankGrid[row] = new Card(false);
addObject(blankGrid[row], 100 + 90%row+l, 350);

4 =%]l amas 1 = v
et and place blank car

ds for nmuber of dealer cards

for (int row = dealerCount; row < 5; row++){

‘card = new Card(Blank=true):;

blankGrid[row] = new Card(true):’
addObjecti{blankGrid[row], 100 + 90%row+l, 350);

30] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Scenario Example

Your scenario should look similar to the following. Reset
the scenario a few times to test that the dealer draws a

different number of cards.

31] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Coding End of Gameplay

* Next, enter the endGame method in the Table class to
code what happens when the player clicks the Play
Cards button. This method:

— Starts the endGame method

— Counts the players' total

— Shows the dealer's cards

— Checks to see who wins

— Updates the Play Game button image to display winner
— Stops the game

* Enter the endGame method as shown on the following
slide. Save and compile the code.

eeeeeeeee

(@) =y \e@l =8 ACADEMY

Putting it All Together with Greenfoot

Create endGame Method

public void endGame()

{

}

33] Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

‘Calculate the 1

for (int row = 0; row <playerCount; row++){
playerTotal = playerTotal + cardGrid[row].getNumValue()’

eriotal

how de

for (int row = 0; row < 5; rowH+){
addObjectidealerCard[row], 100 + 90%*row+l, 350);

}

//Check who wins

if (dealerTotal >= playerTotal && dealerTotal «<=21){
playButton. setInage ("images/dealerwins.png™) ;

}

else {

if (playerTotal > dealerTotal && playerTotal <=21){

! /Plaver wins

playButton. setInage ("imnages/playerwins.png™) ;
}
else{
if (playerTotal <=21 && dealerTotal > 21){

Plaver ©

playButton. setInage (“images/playerwins.png™) ;
}

else {

Greenfoot.stop():

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Coding the Game's Action

* Finally, code the following specifications in the Table
class's act method for how the BlackJack table will act
when the player clicks on objects:

— React to clicks on the player's hand to deal a card, but only
up to 5 cards.

— A click anywhere in the hand will place the card in the next
open spot.

— React to clicks on the Play Cards button, but only if the
player has played at least two cards.

eeeeeeeee

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Code Table Actions in the Act Method

In the act method for the Table class, enter the following
code on this slide and the next slide. Save and compile
the scenario.

_I.-'ﬂ'w

* If the deck iz clicked on, then drawv a card from it {(unless it's empty.)
i

public woid act()

i

if (Greenfoot.mouseClicked(playButton) && plaverCount »==2) [
endGane (] 2

}

if (Greenfoot.mousellicked (cardGrid[0]) && mainDeck.getiize()>=0 && playerCount <5){
cardGrid[playverCount] = mainDeck.drawCard():;
playerCount++;

+

if (Greenfoot.mousellicked(cardGrid[l]] && mainDeck.get3ize()=0 s& plaverCount <5) !
cardGrid[playerCount] = mnainDeck.drawCardi):
playerCount+;

i

35 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Remaining Table Actions in the Act Method

if(Greenfoot.mouselClicked(cardzrid[2]) &«& mainbDeck.get3ize()1>0 && playerCount <5) /!
cardGrid[playerCount] = mainbeck.drawCard():
playerCount++;

if (Greenfoot.mouseClicked (cardGrid[3]) && mainDeck.getlize()1>0 & playerCount <£5) /!
cardGrid[playerCount] = mainbeck.drawCardi)
playerCount++;

if (Greenfoot.mouselClicked(cardtrid[4]) && mainDeck.get3ize()1>0 && playerCount <5) !
cardGrid[playerCount] = mainbeck.drawCardi):
playverCount4+:

for [(int row = 0; row < playerCount; row){
add0bjecticardGrid[row], 100 + S0%row+l, 150);

36 | Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

(@) =yAN@ M=l ACADEMY Putting it All Together with Greenfoot

Instructions to Play the Game

* You are finished coding the game. Instructions to play
the game:
— Run the scenario to start the game.

— Click inside the first empty card space in the player area to
play a card.

— When you are satisfied with the cards you have drawn,
click Play Cards to see if you beat the dealer. The Play
Cards button will display the winner.

— Play a few games to try and beat the dealer.

* Review the code in the completed scenario example,
JF_scenarioBworking, if you have problems with your
scenario.

eeeeeeeee

(@) =y \e@l =8 ACADEMY

Putting it All Together with Greenfoot

Additional Features

* There are many features which could be added to this
scenario. Can you think of any?

 Write them in your journal and try to code them for

yourself. As you practice coding, you will become more
skilled.

eeeeeeeee

(@ =7\ @ = ACADEMY Putting it All Together with Greenfoot

Summary

In this lesson, you should have learned how to:
* Apply Greenfoot knowledge by creating a Java game

39 [Copyright © 2012, Oracle and/or its affiliates. All rights
reserved.

