
1 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Creating Java Programs with

Greenfoot

Creating a World, Animating Actors, and Ending a Game

2 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Overview

This lesson covers the following topics:

• Construct a world object using a constructor method

• Create an object using a constructor

• Write programming statements to use the new keyword

• Define the purpose and syntax of a variable

• Recognize the syntax to define and test variables

• Write programming statements to switch between two

images

• Write programming statements to end a game

Creating a World, Animating Actors, and Ending a Game

3 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Constructors

• When a new World subclass is created and compiled,

Greenfoot executes a constructor that creates an

instance of it to display in the scenario.

• Constructors set up the instance and establish an initial

state, such as the size and resolution of the instance.

– Constructors have no return type.

– Their name, immediately following the word “public,” is the

same as the class in which they are defined.

Creating a World, Animating Actors, and Ending a Game

Constructors are special methods that are executed

automatically whenever a new instance of the class is created.

4 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Constructor Parameters

• A constructor’s parameters allow an instance’s initial

values to be passed into the constructor. These

parameters:

– Are only available to the instance created by the

constructor.

– Have a restricted scope limited to when the constructor is

declared.

– Have a restricted lifetime limited to the single execution of

the constructor.

– Disappear once a constructor is finished executing.

– Are valid variables as long as the instance exists.

Creating a World, Animating Actors, and Ending a Game

5 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Constructor Example

Creating a World, Animating Actors, and Ending a Game

This constructor in the World subclass uses the super()

keyword to pass the world's height, width and resolution

values to the instance.

6 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Parameters Example

Creating a World, Animating Actors, and Ending a Game

To change the size of the game board, modify the

arguments in the parameter of the constructor. This

example makes the world square instead of rectangular

by changing the x coordinate limit to 400.

7 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Automatically Create Actor Instances

• Write code in the World constructor to automatically add

Actor instances to the game when the scenario is

initialized.

• This eliminates the need for the player to have to

manually add instances before the game starts.

• For example, in a matching game, the cards should

automatically display in the scenario when the game

starts.

Creating a World, Animating Actors, and Ending a Game

8 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Code to Automatically Create Instances

• The code in the World constructor includes the following

components:

– super() statement with the size of the world as arguments.

– addObject method with the following arguments:

• Keyword new, followed by the class name, tells the constructor

that a new instance of that class should be added.

• X and Y coordinates where the new instance should be

positioned in the world.

Creating a World, Animating Actors, and Ending a Game

public DukeWorld()
{
 super(560, 560, 1);
 addObject (new Duke(), 150, 100);
}

9 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Greenfoot Actor Instances

• Alternating between two images that look slightly

different gives an instance the appearance of

movement.

• Greenfoot Actor instances:

– Receive and hold an image from their class.

• The image was assigned to the class when the class was

created.

– Have the ability to hold multiple images.

– Can be programmed to change the image they display at

any time.

Creating a World, Animating Actors, and Ending a Game

10 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

GreenfootImage Class

• The GreenfootImage class enables Greenfoot actors to

maintain their visible image by holding an object of type

GreenfootImage.

• This class is used to help a class obtain and manipulate

different types of images.

• Images that this class will use must pre-exist in the

scenario's Images folder.

Creating a World, Animating Actors, and Ending a Game

11 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Constructor to Obtain New Image Object

• Create a constructor that retrieves a new image object

from a file when creating an instance of a class.

• The example constructor below creates the new image

and attaches it to the Actor class.

Creating a World, Animating Actors, and Ending a Game

setImage (new GreenfootImage(“duke5.png”));

setImage Method

new Keyword

GreenfootImage Class

Image File Name as

Arguments in

Parameter List

12 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Assigning a New Image to a Class

• The statement below creates the new image object from

the named image file.

• When inserted into the class's source code, this image

object is ready for the class to use.

• The statement is executed as follows:

– The GreenfootImage object is created first.

– The setImage method call is executed, passing the newly-

created image object as an argument to the parameter list.

Creating a World, Animating Actors, and Ending a Game

setImage(new GreenfootImage (“duke5.png”));

13 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Assigning an Image Example

Creating a World, Animating Actors, and Ending a Game

The setImage method assigns the image in the file

“duke5.png” to the Actor class. Each time an instance of

this class is added to the scenario, it displays the

“duke5.png” image.

setImage(new GreenfootImage (“duke5.png”));

Allows image object

to be used by Actor

class. Expects image

as parameter.

Creates the new

image.

Image from

Greenfoot class.

Image file name as

argument.

14 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Reasons Why Instances Hold Multiple Images

• You may want an instance to hold and access multiple

images:

– To appear to change color.

– To appear to change from one type of object to another.

For example, magically change from a rabbit to a tortoise.

– To appear to move:

• To walk: Change from an object with left leg extended, to one

with right leg extended.

• To flip cards: Change from a blank card to a non-blank card.

Creating a World, Animating Actors, and Ending a Game

15 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Accessing Multiple Images

• For example, an instance could access two images,

each with a slightly different arm position, so the

instance waves its arm as it moves.

• To achieve this motion:

– Create two images of the instance, each with slightly

different arm positions.

– Store the two images in the instance, so they can be

accessed repeatedly as the object moves.

– Code the class to alternate between the two images that

are displayed.

Creating a World, Animating Actors, and Ending a Game

16 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Variables

Creating a World, Animating Actors, and Ending a Game

Use a variable to store the two image objects in the class.

This allows the class to easily access them for use with

the instances.

Object 1

Object 2

Variable 1

Variable 2

A variable is declared in a class. It is used to store information

for later use, or to pass information. It can store objects or

values.

17 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Variable Format

• A variable’s format includes:

– Data type: What type of data to store in the variable.

– Variable name: A description of what the variable is used

for so it can be referred to later.

• In this example, the variable name is image1 and the

variable type is GreenfootImage.

Creating a World, Animating Actors, and Ending a Game

private GreenfootImage image1

private variable-type variable-name;

18 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Declaring Variables

• Declare variables before the constructors and methods.

• The format for declaring a variable includes:

– Keyword private to indicate that the variable is only

available within the Actor class.

– Class to which the image belongs.

– Placeholder for the variable into which the image will be

stored.

Creating a World, Animating Actors, and Ending a Game

Variables

19 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Assignment Statements

• An assignment is needed to store objects in a variable.

• When an object is assigned to a variable, the variable

contains a reference to that object.

• An assignment statement:

– Stores the object or value into a variable.

– Is written with an equals symbol.

• Format:

Creating a World, Animating Actors, and Ending a Game

Variable = expression;

20 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Assignment Statement Components

• An assignment statement includes:

– Variable: Name of variable to store object or value.

– Equals symbol, which is the assignment symbol.

– Expression:

• Name of object or value to assign.

• An instruction that the object or value is new.

• The class to which the image belongs.

• Example:

Creating a World, Animating Actors, and Ending a Game

image1 = new GreenfootImage(“duke.png”);
image2 = new GreenfootImage(“duke2.png”);

21 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Initializing Images or Values

• Initializing is the process of establishing the instance and

its initial values.

• When the class creates new instances, each instance

contains a reference to the images or values contained

in the variables.

• Guidelines:

– Signature does not include a return type.

– Name of constructor is the same as the name of the class.

– Constructor is automatically executed to pass the image or value

on to the instance when an instance of the class is created.

Creating a World, Animating Actors, and Ending a Game

22 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Actor Constructors Example

• The following actor constructor tells Greenfoot to

automatically create a new Duke instance and initialize,

or assign, two variables to the instance.

• The last line of the constructor, setImage(image1),

indicates that the first variable should display when the

instance is added to the scenario.

Creating a World, Animating Actors, and Ending a Game

23 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Test Values of Variables

• Once the class has initialized the two variables with the

images, program the instance to automatically switch the

image it displays as it moves.

• As these images alternate with each movement, it

makes the instance appear more animated.

• It is possible to program the switch between images

without having to write many lines of code that

associates each image to every single movement.

Creating a World, Animating Actors, and Ending a Game

24 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Write Actions in Pseudocode

• Identify the actions to program by writing them in

pseudocode.

• Pseudocode expresses the tasks or operations for the

instances to perform in a mix of Java language and plain

English words.

• This helps to better understand what behaviors the

instances should perform before writing the real code.

Creating a World, Animating Actors, and Ending a Game

25 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Pseudocode Example

• image1 is displayed when the instance is created.

• When Duke makes his next movement, image2 should

be displayed, and vice versa.

• This is expressed as an IF-ELSE statement.

Creating a World, Animating Actors, and Ending a Game

if (current image displayed is image1) then
 use image2 now
else
 use image1 now

26 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

== Operator

• The programming statements that instruct the instance

to alternate between images contains:

– IF-ELSE statement

– == operator (two equals signs)

• The == operator:

– Is used in an IF statement to test whether two values are

equal.

– Compares one value with another.

– Returns a boolean (true or false) result.

• Remember that = is the assignment symbol, not the

equals symbol.

Creating a World, Animating Actors, and Ending a Game

27 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Components of IF-ELSE Statement

• Components of the IF-ELSE statement:

– Method getImage receives the instance's current image.

– The == operator checks that the value the instance

displays is equal to image1.

• If equal, then display image2.

• Else, display image1.

Creating a World, Animating Actors, and Ending a Game

28 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

IF-ELSE Statement Example

The IF-ELSE statement below is written in the act method

to make the instance alternate display of two images as it

moves forward.

Creating a World, Animating Actors, and Ending a Game

29 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

End the Game

• The Greenfoot class has a Stop method that you can

use to end your game at a point that you designate.

• You may want to end the game when:

– The player achieves a milestone.

– Time runs out on the clock.

– The instance touches a certain coordinate or object.

Creating a World, Animating Actors, and Ending a Game

30 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Example Duke Game

• Example game:

– The player decides how many Code objects must be eaten

by a keyboard-controlled Duke object to end the game.

– When the game ends, a sound says, “Game Over”.

• Game specifications:

– Create and initialize variables to eat objects.

– Provide a count of the total objects eaten.

– Allow the player to enter the number of objects Duke

should eat to win.

– Enter the stop method to stop the game when the required

number of objects are eaten by Duke.

Creating a World, Animating Actors, and Ending a Game

31 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Find Stop Method in Greenfoot API

Go to the Help menu and select Greenfoot Class

Documentation. Find the stop method in the Greenfoot

API.

Creating a World, Animating Actors, and Ending a Game

32 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Write Stop Method in Source Code

At the point that the game should end, write the method

as follows into the source code. Dot notation is used to

call the method.

Creating a World, Animating Actors, and Ending a Game

Greenfoot.stop();

33 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Assign Variables to Instances Example

Duke must eat a number of Code objects defined by the

player to win the game. The variables are defined before

the constructors and methods. The Duke constructor

assigns the variables to the instances it produces.

Creating a World, Animating Actors, and Ending a Game

34 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

lookForCode Defined Method Example

The lookForCode defined method is written below the Act

method to tell Duke to look for Code objects. If the amount

of code eaten equals the code to win, then the game is

won and a sound is played.

Creating a World, Animating Actors, and Ending a Game

35 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Keyboard Controls in Act Method Example

In the Act method, note the keyboard controls, as well as

the lookForCode defined method. If Duke finds Code

objects as he moves, he will eat them.

Creating a World, Animating Actors, and Ending a Game

36 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Terminology

Key terms used in this lesson included:

• Constructor

• Defined variable

• Pseudocode

Creating a World, Animating Actors, and Ending a Game

37 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Summary

In this lesson, you should have learned how to:

• Construct a world object using a constructor method

• Create an object using a constructor

• Write programming statements to use the new keyword

• Define the purpose and syntax of a variable

• Recognize the syntax to define and test variables

• Write programming statements to switch between two

images

• Write programming statements to end a game

Creating a World, Animating Actors, and Ending a Game

38 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Practice

The exercises for this lesson cover the following topics:

• Creating a world constructor method

• Image animation

• Ending a game

• Concept and terminology review

• Journaling world creation and variable uses

Creating a World, Animating Actors, and Ending a Game

