
1 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Creating Java Programs with

Greenfoot

Using Loops, Variables, and Strings

2 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Overview

This lesson covers the following topics:

• Create a while loop in a constructor to build a world

• Describe an infinite loop and how to prevent one from

occurring

• Use an array to store multiple variables used to create a

world

• Create an expression using logic operators

• Describe the scope of a local variable in a method

• Use string variables to store and concatenate strings

Using Loops, Variables, and Strings

3 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Using Loops

• Writing programming statements in the World

constructor is an efficient way to create new instances

with parameters passed to them.

• However, a more efficient way to create multiple

instances is to use a loop.

Using Loops, Variables, and Strings

A loop is a statement that can execute a section of code multiple

times. There are several types of loops in Java programming.

4 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

WHILE Loop

• The WHILE loop executes a statement or set of

statements a number of times.

• For example, with a WHILE loop, you can:

– Create 50 instances at once.

– Execute a method 10,000 times.

Using Loops, Variables, and Strings

5 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

WHILE Loop Components

• Components of a while loop:

– Java keyword while

– Condition in parentheses

– One or more statements

Using Loops, Variables, and Strings

while (condition)
{
 statement;
 statement;
}

6 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Control Execution of While Loop

• Components to control how many times the WHILE loop

is executed:

– Loop variable: A counter that tells how many times to

execute the loop (often named i)

– Control operators

– Local variable

Using Loops, Variables, and Strings

7 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Local Variables

• A local variable is often used within loop constructs.

• While it is similar to a field, it is different because:

– It is declared inside the method body, not at the beginning

of a class.

– It does not have a visibility modifier (public or private) in

front of its definition.

– It exists only until the current method finishes running, and

is then erased from memory.

Using Loops, Variables, and Strings

A local variable is a variable declared inside the body of the

method to temporarily store values, such as references to

objects or integers.

8 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Declare a Local Variable

• To create a WHILE loop, first declare the local variable

and assign it a value.

• To declare a local variable:

– Declare the variable type (integer or object reference).

– Name the variable.

– Initialize the variable to a number (usually zero).

• Example:

Using Loops, Variables, and Strings

int i = 0;

Variable Type

(Integer)

Variable Name (i)

Variable Value (0)

9 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Create the Condition

• Beneath the initialized variable, create the condition that

specifies how many times the body of the loop should be

executed.

• Use a control operator to stop the execution when it

reaches the number of executions you specified.

• Example:

– Execute the body of the loop while the number of

executions is less than, but not equal to, 10. When the loop

has been executed 10 times (0-9), it stops.

Using Loops, Variables, and Strings

int i = 0;
while (i < 10){
}

10 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Insert the Statements to Execute

• In brackets, insert the statements to execute.

• Example:

– Add 10 new Duke objects with a specific keyboard key and

sound file attached to each object.

Using Loops, Variables, and Strings

int i = 0;
while (i < 10)
{
 addObject (new Duke (“k”, “test.wav”),150, 100);
}

11 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Increment the Loop Variable

• Increment the loop variable as follows:

– Insert a statement at the end of the loop body to increase

the loop variable by 1 each time the loop is executed.

– Use closed brackets to end the statement.

• This will change the variable with each loop to ensure it

does not loop indefinitely.

Using Loops, Variables, and Strings

int i = 0;
while (i < 10)
{
 addObject (new Duke (“k”, “test.wav”),150, 150);
 i = i + 1;
}

12 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

WHILE Loop Example

This while loop was inserted into the World constructor

and creates 10 Dukes when the world is initialized.

Using Loops, Variables, and Strings

13 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Object Placement and WHILE Loops

• In the previous example, when the constructor is

executed, all of the instances are placed at the same

coordinates. This causes them to sit on top of each

other.

• Create an expression that calculates the size of an

instance, and then places subsequent instances at

different coordinates.

Using Loops, Variables, and Strings

14 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Calculate the Placement of Instances

• To program instances to land at different coordinates,

replace the fixed x-coordinate for the object's width with

an expression that includes:

– Variable i.

– Multiplication operator (*).

– Fixed offset integer so the first object lands on the screen.

Using Loops, Variables, and Strings

15 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Infinite Loops

• If an end to the loop isn't established, the loop keeps

executing and never stops.

• Infinite loops are a common problem in programming.

• An infinite loop executes as follows:

– The variable never changes.

– The condition always remains true.

– The loop continues looping forever.

Using Loops, Variables, and Strings

An infinite loop is when the loop keeps executing and does not

stop because the end to the loop isn't established.

16 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Animating Objects with a Keyboard Key

• Another way to animate an object is to have the object

change the image it displays when a keyboard key is

pressed.

• Pseudocode for this action:

– Switch between two images when a key is pressed.

– When key is pressed, show image1.

– When key is not pressed, show image2.

– Object needs to remember if the key is pressed or not.

• Otherwise, it will rapidly switch the object it displays, and the

keyboard key will not be able to control it.

Using Loops, Variables, and Strings

17 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Keyboard Key Example

• Duke's arm should wave if a keyboard key is pressed.

• Two images are saved in the scenario: One with Duke's

arm up, and one with his arm down.

• Pseudocode for this action:

– If Duke's arm is up, and the keyboard key is down, then

show the image with Duke's arm down.

– Remember that Duke's arm is currently down.

Using Loops, Variables, and Strings

18 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Specify Image to Display

• First, write the code in the class's act method to specify

the image to show if the key is pressed down, or not.

• Use the following methods:

– isKeyDown Greenfoot method (use dot notation)

– setImage method

Using Loops, Variables, and Strings

public void act()
{
 if (Greenfoot.isKeyDown(“k”)){
 setImage (“Duke.PNG”);
 }
 else {
 setImage (“DukeDown.PNG”);
 }
}

19 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Declare isDown Variable

• Next, declare the isDown variable in the class's source

code, and assigned it to Duke, to tell Duke to remember

if the key is pressed down or not.

• True/false condition:

– True when the keyboard key is pressed down.

– False when the keyboard key is not pressed down.

Using Loops, Variables, and Strings

20 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

isDown Variable Example

The isDown variable is declared and set to false, because

the scenario starts with the keyboard key not down.

Using Loops, Variables, and Strings

21 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Logic Operators

• To test if Duke's arm is up or down when a key is

pressed, this requires:

– Multiple boolean expressions to express if one or both are

true or false.

– Logic operators to connect the boolean expressions.

• For example, the first statement, “If Duke's arm is not

down, and the ‘d’ is down...” would be coded as:

Using Loops, Variables, and Strings

if (!isDown && Greenfoot.isKeyDown(“d”))

22 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Types of Logic Operators

Using Loops, Variables, and Strings

Logic Operator Means Definition

Exclamation Mark

(!)
NOT

Reverses the value of a boolean expression (if b

is true, !b is false. If b is false, !b is true).

Double ampersand

(&&)
AND

Combines two boolean values, and returns a

boolean value which is true if and only if both of

its operands are true.

Two lines (II) OR
Combines two boolean variables or expressions

and returns a result that is true if either or both

of its operands are true.

Logic operators can be used to combine multiple boolean

expressions into one boolean expression.

23 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Logic Operators Example

Logic operators set the image that appears if the “d” key is

up or down.

Using Loops, Variables, and Strings

24 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Play Sound

• Once the statement is programmed to animate Duke,

the last step is to program the statement for Duke to

make a sound when the “d” key is pressed, in addition to

moving his arm.

• Define the method to play the sound, so you can call it in

the act method when the specific key is pressed down.

Using Loops, Variables, and Strings

25 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Define play Method

• First, define a method in the class called play. Write the

method below the act method, as shown below.

• This method:

– Calls the playSound method from the Greenfoot class

using dot notation in the body of the IF statement.

– Includes the name of the sound file to play.

Using Loops, Variables, and Strings

26 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Enter play Method in Act Method

• Enter the play method in the act method:

– Enter it into one of the IF statements to have it play when a

keyboard key is pressed.

– Enter it below the IF statement to have it play continuously

during the game.

Using Loops, Variables, and Strings

27 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Arrays

• When you create multiple instances using a WHILE loop

constructor, each receives the same sound file and

keyboard key assignment.

• In most situations, this isn't ideal. Instances may need to

react to different keyboard keys, or play different sounds.

• Using an array, you can hold and access multiple

variables, and assign different values to new instances

each time they are created.

Using Loops, Variables, and Strings

An array is an object that holds multiple variables. An index can

be used to access the variables.

28 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

How Variables Hold Values

• A simple String variable named “keyname” is a container

that holds a value: A single keyboard key's name.

• Keyname container:

Using Loops, Variables, and Strings

String keyname;

a

29 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

How Arrays Hold Variables

• An array object can hold many variables. This array

named keynames can hold many variables.

Using Loops, Variables, and Strings

String [] keynames

String[]

0 1 2 3

“a” “s” “d” “f”

30 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Variable Declaration for an Array

• To declare an array object, write the variable declaration

as follows:

– Element type:

• String [] for an array of Strings.

• int [] for an array of integers.

– Square brackets [] to indicate that this variable is an array.

– Variable assignment.

– Expression that creates the array object and fills it with an

unlimited number of Strings or integers.

Using Loops, Variables, and Strings

31 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Array Example

• In this array:

– The keynames String variable is created.

– “a”, “s”, “d”, and “f”, Strings are the array object.

– An array object is assigned to the variable keynames.

Using Loops, Variables, and Strings

String [] keynames;
keynames = {“a”, “s”, “d”, “f”};

32 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Accessing Elements in an Array

• Use an index to access the elements in the array object.

• To use an index:

– Each element has an index, starting at position zero [0].

– Each element's position increases by 1.

Using Loops, Variables, and Strings

Elements are accessed using square brackets [] and an index

to specify which array element to access. An index is a position

number in the array object.

String[]

Index 0 1 2 3

Element “a” “s” “d” “f”

33 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Access Elements in an Array

• To access an element in the array, attach the index for

that element in square brackets to the array name.

• The statement keynames[3] accesses the array element

at index 3—the String “f”. This is the fourth element in

the array.

Using Loops, Variables, and Strings

String[]

Index 0 1 2 3

Element “a” “s” “d” “f”

34 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Play Different Sounds When Keys Pressed

• To make an instance able to play a variety of sounds

based on which keyboard key is pressed, create two

arrays in the World class.

• The arrays include:

– Names of keyboard keys for Duke instances.

– Names of sound files for Duke instances.

• Declare fields in the World class for those arrays.

• Store the filled arrays.

Using Loops, Variables, and Strings

35 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Create the Arrays

Create two arrays are in the World class, listing the key

names and sound files to use.

Using Loops, Variables, and Strings

36 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Create makeDukes Method

For clarity in coding, we moved the creation of Duke into a

separate method called makeDukes.

Using Loops, Variables, and Strings

Duke object assigned

to a local variable

called duke.

The loop variable i

accesses all of the key

strings and sound file

names in the array

object, in the order

entered.

37 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Call the makeDukes Method

Finally, call the makeDukes method in the World

constructor.

Using Loops, Variables, and Strings

38 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

String Concatenation

• To reduce the number of redundant characters or

phrases you need to type into each array, use string

concatenation.

• A plus symbol between two strings puts them together

into a single string.

Using Loops, Variables, and Strings

String concatenation combines two Strings together into one. It

is represented by a plus symbol (+).

39 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

String Concatenation Example

• Instead of entering “.wav” after each sound file name in

the array, add + “.wav” after the soundName value in the

constructor.

• The name stored in the array—test—combined with

“.wav” produces the full file name that the program

understands, “test.wav”.

Using Loops, Variables, and Strings

Duke duke = new Duke(keyNames[i], soundNames[i] + “.wav”);

40 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Terminology

Key terms used in this lesson included:

• Array

• Elements

• Index

• Infinite loop

• Local variables

• Logic operators

• Loop

Using Loops, Variables, and Strings

41 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Summary

In this lesson, you should have learned how to:

• Create a while loop in a constructor to build a world

• Describe an infinite loop and how to prevent one from

occurring

• Use an array to store multiple variables used to create a

world

• Create an expression using logic operators

• Describe the scope of a local variable in a method

• Use string variables to store and concatenate strings

Using Loops, Variables, and Strings

42 Copyright © 2012, Oracle and/or its affiliates. All rights

reserved.

Practice

The exercises for this lesson cover the following topics:

• Creating a world constructor method with sound and

keyboard input

• Using loops and arrays

• Journaling while loops and arrays

Using Loops, Variables, and Strings

