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Creating Java Programs with 

Greenfoot 

Creating a World, Animating Actors, and Ending a Game 
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Overview 

This lesson covers the following topics: 

• Construct a world object using a constructor method 

• Create an object using a constructor 

• Write programming statements to use the new keyword 

• Define the purpose and syntax of a variable 

• Recognize the syntax to define and test variables 

• Write programming statements to switch between two 

images 

• Write programming statements to end a game 
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Constructors 

• When a new World subclass is created and compiled, 

Greenfoot executes a constructor that creates an 

instance of it to display in the scenario.  

• Constructors set up the instance and establish an initial 

state, such as the size and resolution of the instance.  

– Constructors have no return type.  

– Their name, immediately following the word “public,” is the 

same as the class in which they are defined.   
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Constructors are special methods that are executed 

automatically whenever a new instance of the class is created.  
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Constructor Parameters 

• A constructor’s parameters allow an instance’s initial 

values to be passed into the constructor. These 

parameters:  

– Are only available to the instance created by the 

constructor. 

– Have a restricted scope limited to when the constructor is 

declared. 

– Have a restricted lifetime limited to the single execution of 

the constructor. 

– Disappear once a constructor is finished executing. 

– Are valid variables as long as the instance exists.  
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Constructor Example 
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This constructor in the World subclass uses the super() 

keyword to pass the world's height, width and resolution 

values to the instance.   
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Parameters Example 
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To change the size of the game board, modify the 

arguments in the parameter of the constructor. This 

example makes the world square instead of rectangular 

by changing the x coordinate limit to 400. 
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Automatically Create Actor Instances  

• Write code in the World constructor to automatically add 

Actor instances to the game when the scenario is 

initialized.  

• This eliminates the need for the player to have to 

manually add instances before the game starts. 

• For example, in a matching game, the cards should 

automatically display in the scenario when the game 

starts.   
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Code to Automatically Create Instances 

• The code in the World constructor includes the following 

components:  

– super() statement with the size of the world as arguments. 

– addObject method with the following arguments:  

• Keyword new, followed by the class name, tells the constructor 

that a new instance of that class should be added. 

• X and Y coordinates where the new instance should be 

positioned in the world. 
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public DukeWorld() 
{ 
     super(560, 560, 1); 
     addObject (new Duke(), 150, 100); 
} 
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Greenfoot Actor Instances 

• Alternating between two images that look slightly 

different gives an instance the appearance of 

movement. 

• Greenfoot Actor instances:  

– Receive and hold an image from their class.  

• The image was assigned to the class when the class was 

created. 

– Have the ability to hold multiple images.  

– Can be programmed to change the image they display at 

any time. 
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GreenfootImage Class 

• The GreenfootImage class enables Greenfoot actors to 

maintain their visible image by holding an object of type 

GreenfootImage. 

• This class is used to help a class obtain and manipulate 

different types of images.  

• Images that this class will use must pre-exist in the 

scenario's Images folder.  
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Constructor to Obtain New Image Object 

• Create a constructor that retrieves a new image object 

from a file when creating an instance of a class.  

• The example constructor below creates the new image 

and attaches it to the Actor class.  
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setImage (new GreenfootImage(“duke5.png”));  
 

setImage Method 

new Keyword 

GreenfootImage Class 

Image File Name as 

Arguments in 

Parameter List  
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Assigning a New Image to a Class 

• The statement below creates the new image object from 

the named image file.  

• When inserted into the class's source code, this image 

object is ready for the class to use.  

• The statement is executed as follows:  

– The GreenfootImage object is created first. 

– The setImage method call is executed, passing the newly-

created image object as an argument to the parameter list.  
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setImage(new GreenfootImage (“duke5.png”)); 
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Assigning an Image Example 
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The setImage method assigns the image in the file 

“duke5.png” to the Actor class. Each time an instance of 

this class is added to the scenario, it displays the 

“duke5.png” image. 

 

 

 
setImage(new GreenfootImage (“duke5.png”)); 
 

Allows image object  

to be used by Actor 

class. Expects image  

as parameter. 

Creates the new 

image. 

Image from 

Greenfoot class. 

Image file name as 

argument. 
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Reasons Why Instances Hold Multiple Images 

• You may want an instance to hold and access multiple 

images:  

– To appear to change color. 

– To appear to change from one type of object to another. 

For example, magically change from a rabbit to a tortoise. 

– To appear to move: 

• To walk: Change from an object with left leg extended, to one 

with right leg extended. 

• To flip cards: Change from a blank card to a non-blank card. 

Creating a World, Animating Actors, and Ending a Game  
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Accessing Multiple Images 

• For example, an instance could access two images, 

each with a slightly different arm position, so the 

instance waves its arm as it moves.  

• To achieve this motion:  

– Create two images of the instance, each with slightly 

different arm positions.  

– Store the two images in the instance, so they can be 

accessed repeatedly as the object moves. 

– Code the class to alternate between the two images that 

are displayed.  
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Variables 
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Use a variable to store the two image objects in the class. 

This allows the class to easily access them for use with 

the instances.  

 

 

 

Object 1 

Object 2 

Variable 1 

Variable 2 

A variable is declared in a class. It is used to store information 

for later use, or to pass information. It can store objects or 

values.   
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Variable Format 

• A variable’s format includes: 

– Data type: What type of data to store in the variable.  

– Variable name: A description of what the variable is used 

for so it can be referred to later. 

 

 

• In this example, the variable name is image1 and the 

variable type is GreenfootImage. 
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private GreenfootImage image1   
 

private variable-type  variable-name; 
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Declaring Variables 

• Declare variables before the constructors and methods. 

• The format for declaring a variable includes:  

– Keyword private to indicate that the variable is only 

available within the Actor class. 

– Class to which the image belongs. 

– Placeholder for the variable into which the image will be 

stored.  
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Assignment Statements 

• An assignment is needed to store objects in a variable. 

• When an object is assigned to a variable, the variable 

contains a reference to that object. 

• An assignment statement:  

– Stores the object or value into a variable. 

– Is written with an equals symbol. 

• Format:  
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Variable = expression;  
 



20 Copyright © 2012, Oracle and/or its affiliates. All rights 

reserved. 

Assignment Statement Components 

• An assignment statement includes:  

– Variable: Name of variable to store object or value. 

– Equals symbol, which is the assignment symbol. 

– Expression:  

• Name of object or value to assign. 

• An instruction that the object or value is new. 

• The class to which the image belongs. 

• Example:  
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image1 = new GreenfootImage(“duke.png”); 
image2 = new GreenfootImage(“duke2.png”); 
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Initializing Images or Values 

• Initializing is the process of establishing the instance and 

its initial values.  

• When the class creates new instances, each instance 

contains a reference to the images or values contained 

in the variables.  

• Guidelines:   

– Signature does not include a return type. 

– Name of constructor is the same as the name of the class. 

– Constructor is automatically executed to pass the image or value 

on to the instance when an instance of the class is created. 

Creating a World, Animating Actors, and Ending a Game  
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Actor Constructors Example 

• The following actor constructor tells Greenfoot to 

automatically create a new Duke instance and initialize, 

or assign, two variables to the instance.  

• The last line of the constructor, setImage(image1), 

indicates that the first variable should display when the 

instance is added to the scenario.  
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23 Copyright © 2012, Oracle and/or its affiliates. All rights 

reserved. 

Test Values of Variables  

• Once the class has initialized the two variables with the 

images, program the instance to automatically switch the 

image it displays as it moves.  

• As these images alternate with each movement, it 

makes the instance appear more animated.   

• It is possible to program the switch between images 

without having to write many lines of code that 

associates each image to every single movement. 

Creating a World, Animating Actors, and Ending a Game  
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Write Actions in Pseudocode 

• Identify the actions to program by writing them in 

pseudocode.  

• Pseudocode expresses the tasks or operations for the 

instances to perform in a mix of Java language and plain 

English words.  

• This helps to better understand what behaviors the 

instances should perform before writing the real code.  

Creating a World, Animating Actors, and Ending a Game  
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Pseudocode Example 

• image1 is displayed when the instance is created.  

• When Duke makes his next movement, image2 should 

be displayed, and vice versa.  

• This is expressed as an IF-ELSE statement. 
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if (current image displayed is image1) then 
     use image2 now 
else 
     use image1 now 
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== Operator 

• The programming statements that instruct the instance 

to alternate between images contains:  

– IF-ELSE statement 

– == operator (two equals signs) 

• The == operator:  

– Is used in an IF statement to test whether two values are 

equal.   

– Compares one value with another. 

– Returns a boolean (true or false) result.   

• Remember that = is the assignment symbol, not the 

equals symbol.  
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Components of IF-ELSE Statement 

• Components of the IF-ELSE statement: 

– Method getImage receives the instance's current image.   

– The == operator checks that the value the instance 

displays is equal to image1. 

• If equal, then display image2. 

• Else, display image1. 
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IF-ELSE Statement Example 

The IF-ELSE statement below is written in the act method 

to make the instance alternate display of two images as it 

moves forward.  

Creating a World, Animating Actors, and Ending a Game  
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End the Game 

• The Greenfoot class has a Stop method that you can 

use to end your game at a point that you designate.  

• You may want to end the game when:  

– The player achieves a milestone. 

– Time runs out on the clock. 

– The instance touches a certain coordinate or object. 
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Example Duke Game  

• Example game:  

– The player decides how many Code objects must be eaten 

by a keyboard-controlled Duke object to end the game.  

– When the game ends, a sound says, “Game Over”.  

• Game specifications:  

– Create and initialize variables to eat objects. 

– Provide a count of the total objects eaten.  

– Allow the player to enter the number of objects Duke 

should eat to win. 

– Enter the stop method to stop the game when the required 

number of objects are eaten by Duke.  
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Find Stop Method in Greenfoot API 

Go to the Help menu and select Greenfoot Class 

Documentation. Find the stop method in the Greenfoot 

API.  

Creating a World, Animating Actors, and Ending a Game  
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Write Stop Method in Source Code 

At the point that the game should end, write the method 

as follows into the source code. Dot notation is used to 

call the method.  
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Greenfoot.stop(); 
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Assign Variables to Instances Example 

Duke must eat a number of Code objects defined by the 

player to win the game. The variables are defined before 

the constructors and methods. The Duke constructor 

assigns the variables to the instances it produces.  
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lookForCode Defined Method Example 

The lookForCode defined method is written below the Act 

method to tell Duke to look for Code objects. If the amount 

of code eaten equals the code to win, then the game is 

won and a sound is played.   
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Keyboard Controls in Act Method Example 

In the Act method, note the keyboard controls, as well as 

the lookForCode defined method. If Duke finds Code 

objects as he moves, he will eat them.  
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Terminology 

Key terms used in this lesson included: 

• Constructor 

• Defined variable 

• Pseudocode 
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Summary 

In this lesson, you should have learned how to: 

• Construct a world object using a constructor method 

• Create an object using a constructor 

• Write programming statements to use the new keyword 

• Define the purpose and syntax of a variable 

• Recognize the syntax to define and test variables 

• Write programming statements to switch between two 

images 

• Write programming statements to end a game 
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Practice 

The exercises for this lesson cover the following topics: 

• Creating a world constructor method 

• Image animation 

• Ending a game 

• Concept and terminology review 

• Journaling world creation and variable uses 
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