Lesson 2 Intercepts

Intercepts of a Graph

The points at which a graph crosses the axes are called the **intercepts** of the graph.

The x-intercept of the graph shown at right is (-3,0), and its y-intercept is (0,4).

RQ1 What are the intercepts of a graph?

- **a.** The variables displayed on the axes.
- **b.** Points where the graphs intersect.
- c. The highest and lowest points.
- **d.** Points where the graph intersects the axes.

The coordinates of the intercepts are easy to find.

Intercepts of a Graph

The points where a graph crosses the axes are called the **intercepts** of the graph.

- **1.** To find the x-intercept, we set y = 0 and solve for x.
- **2.** To find the y-intercept, we set x = 0 and solve for y.

Example 1 In Lesson 1, we graphed an equation, $g = 20 - \frac{1}{12} d$, for the amount of gasoline, g, left in Leon's tank after he has driven for d miles. Find the intercepts of the graph.

Solution To find the *d*-intercept, we set g = 0 and solve for *d*.

The *d*-intercept is (240,0). To find the *g*-intercept, we set d=0 and solve for *g*.

$$g = 20 - \frac{1}{12}(\mathbf{0}) = 20$$

The g-intercept is (0, 20).

Exercise 1 Find the intercepts of the graph of $y = -9 - \frac{3}{2}x$.

Meaning of the Intercepts

The intercepts of a graph give us information about the situation it models.

Example 2 What do the intercepts of the graph in Example 1 tell us about the problem situation?

Solution The d-intercept tells us that when $d=240,\ g=0$, or that when Leon has traveled 240 miles, he has 0 gallons of gasoline left; the fuel tank is empty. The g-intercept tells us that when d=0, g=20, or that when Leon has traveled 0 miles, he has 20 gallons of gasoline left. The fuel tank holds 20 gallons when full.

Exercise 2 The gas tank in Rosa's Toyota Prius holds 11 gallons, and she gets 48 miles to the gallon.

- **a.** Write an equation for the amount of gasoline, g_t left in the tank after Rosa has driven for d miles.
- **b.** Find the intercepts of the graph. What do they tell us about the problem situation? **Hint:** Rewrite the sentence with mathematical symbols:

 $(gasoline left) = (gallons in full tank) - (mileage rate) \times (miles driven)$

General Form for a Linear Equation

The graphs of the equations we have seen so far are all portions of straight lines. For this reason such equations are called **linear equations**.

The order of the terms in the equation does not matter. For example, the equation in Example 1,

$$C = 5 + 3t$$
, can be written equivalently as $-3t + C = 5$

and the equation in Example 3,

$$g=20-rac{1}{12}d$$
, can be written as $rac{1}{12}d+g=20$

This form of a linear equation, $Ax + By = C_t$, is called the **general form.**

General Form for a Linear Equation

The **general form** for a linear equation is

$$Ax + By = C$$
 (A and B cannot both be 0)

RQ2 What is the general form of a linear equation?

- **a.** y = mx + b
- **b.** Ax + By = C
- c. Any equation whose graph is a straight line.
- **d.** Set x = 0 and solve for y.

Some linear models are easier to use when they are written in the general form.

- **Example 3** The manager at Albert's Appliances has \$3000 to spend on advertising for the next fiscal quarter. A 30-second spot on television costs \$150 per broadcast, and a 30-second radio ad costs \$50.
- **a.** The manager decides to buy x television ads and y radio ads. Write an equation relating x and y.
- **b.** Make a table of values showing several choices for x and y.
- c. Plot the points from your table, and graph the equation.

Solutions a. Each television ad costs \$150, so x ads will cost \$150x. Similarly, y radio ads will cost \$50y. The manager has \$3000 to spend, so the sum of the costs must be \$3000. Thus,

$$150x + 50y = 3000$$

b. We choose some values of x, and solve the equation for the corresponding value of y. For example, if x = 10, then

$$150(10) + 50y = 3000$$
$$1500 + 50y = 3000$$
$$50y = 1500$$
$$y = 30$$

If the manager buys 10 television ads, she can also buy 30 radio ads. You can verify the other entries in the table.

\boldsymbol{x}	8	10	12	14
\boldsymbol{y}	36	30	24	18

c. We plot the points from the table. All the solutions lie on a straight line.

Exercise 3 The manager at Breadbasket Bakery has \$120 to spend on advertising. An ad in the local flyer costs \$15, and posters cost \$4 each. She decides to buy x ads and yposters. Write an equation relating x and y.

Hint: Use the general form for a linear equation. What is the total amount of money the manager will spend?

Intercept Method of Graphing

Because we really only need two points to graph a linear equation, we might as well find the intercepts and use them to draw the graph.

Intercept Method of Graphing

To graph a linear equation by the intercept method:

- **1.** Find the horizontal and vertical intercepts.
- 2. Plot the intercepts, and draw the line through the two points.

Describe the intercept method of graphing.

- a. Make a table of values and plot the points.
- **b.** Extend the line until it crosses both axes.
- **c.** Solve for y in terms of x.
- **d.** Plot the points (x, 0) and (0, y) and draw the line through them.

Example 4a. Find the x- and y-intercepts of the equation

$$150x + 50y = 3000$$

b. Use the intercepts to graph the equation.

Solutions a. To find the x-intercept, we set y = 0.

$$150x + 50$$
(0) = 3000 Simplify.
 $150x = 3000$ Divide both sides by 150.
 $x = 20$

The x-intercept is the point (20,0). To find the y-intercept, we set x = 0.

$$150({\color{red}0}) + 50y = 3000$$
 Simplify.
 $50y = 3000$ Divide both sides by 50 .
 $y = 60$

The y-intercept is the point (0,60).

b. We scale both axes in intervals of 10, then plot the two intercepts, (20,0) and (0,60). We draw the line through them, as shown in Example 3.

Exercise 4 Find the x- and y-intercepts of the equation in Exercise 3, and use the intercepts to graph the equation.

Hint: Choose convenient scales for the x- and y-axes.

Solving for y in Terms of x

We have now seen two forms for linear equations: the general linear form,

$$Ax + By = C$$

and the form for a linear model,

$$y =$$
(starting value) + (rate) $\times t$

It is sometimes useful to convert an equation from one form to the other.

Example 5a. Solve the equation 4x - 3y = 6 for y in terms of x.

b. Write the equation $y = -9 - \frac{3}{2}x$ in general linear form.

Solutions a. We first isolate the y-term on one side of the equation.

$$\begin{array}{ll} 4x-3y=6 & \text{Subtract } 4x \text{ from both sides.} \\ -3y=6-4x & \text{Divide both sides by } -3. \\ \frac{-3y}{-3}=\frac{6-4x}{-3} & \text{Simplify: divide each term by } -3. \\ y=-2+\frac{4}{3}x & \end{array}$$

b. We write the equation in the form Ax + By = C.

$$y=-9-rac{3}{2}x$$
 Add $rac{3}{2}x$ to both sides. $rac{3}{2}x+y=9$

$$2\left(\frac{3}{2}x+y\right) = (9)2$$
$$3x + 2y = 18$$

Caution! Do not confuse solving for y in terms of x with finding the y-intercept. Compare:

- **a.** In Example 5a, we solved 4x 3y = 6 for y in terms of x to get $y = -2 + \frac{4}{3}x$. This is still an **equation** in two variables; it is just another (equivalent) form of the original equation.
- **b.** To find the y-intercept of the same equation, we first set x=0, then solve for y, as follows:

$$4(0) - 3y = 6$$
$$y = -2$$

This gives us a **particular point** on the graph, namely, (0, -2). the point whose x-coordinate is 0.

Exercise 5a. Solve the equation 150x + 50y = 3000 for y in terms of x.

b. Write the equation y = 0.15x - 3.8 in general linear form with integer coefficients.

Answers to Exercises

1.
$$(0,-9), (-6,0)$$

2a.
$$g = 11 - \frac{1}{48}m$$

b. (0,11) The tank has 11 gallons before Rosa begins driving. (528,0) After Rosa drives 528 miles, the tank will be empty.

3.
$$15x + 4y = 120$$

5a.
$$y = -3x + 60$$

b.
$$-15x + 100y = 380$$

Now go to WeBWork and do the Reading Assignment for this Lesson.

Homework 2

- 1. A deep-sea diver is taking some readings at a depth of 400 feet. He begins rising at a rate of 20 feet per minute.
 - **a.** Complete the table of values for the diver's altitude h after t minutes. (A depth of 400 feet is the same as an altitude of -400 feet.)

t	0	5	10	15	20
h					

- **b.** Write an equation for the diver's altitude, *h*, in terms of the number of minutes, *t*, elapsed.
- **c.** Find the intercepts and sketch the graph.

t	\boldsymbol{h}
0	
	0

d. Explain what each intercept tells us about this problem.

- 2. In central Nebraska, each acre of corn requires 25 acre-inches of water per year, and each acre of winter wheat requires 18 acre-inches of water. (An acre-inch is the amount of water needed to cover one acre of land to a depth of one inch.) A farmer can count on 9000 acre-inches of water for the coming year. (Source: Institute of Agriculture and Natural Resources, University of Nebraska)
 - **a.** Write an equation relating the number of acres of corn, x, and the number of acres of wheat, y, that the farmer can plant.
 - **b.** Complete the table.

\boldsymbol{x}	50	100	150	200
\boldsymbol{y}				

c. Find the intercepts of the graph.

$oldsymbol{x}$	$oldsymbol{y}$
0	
	0

- **d.** Use the intercepts to help you choose appropriate scales for the axes, and graph the equation.
- **e.** What do the intercepts tell us about the problem?
- **f.** What does the point (288, 100) mean in this context?

y

Now go to WeBWorK and do the Skills Practice for this Homework.