[image: image5.jpg]NQORTEL.

Learn@l)org

Experiencing the One Laptop Per Child Program:

A Student Programming Course for the XO

Introduction

"Personal computers will make our future adult population simultaneously more mathematically able and more visually literate. Ten years from now, teenagers are likely to enjoy a much richer panorama of options because the pursuit of intellectual achievement will not be tilted so much in favor of the bookworm, but instead cater to a wider range of cognitive styles, learning patterns, and expressive behaviors."

- Nicholas Negroponte

Executive Summary: This tutorial was created by the summer interns with Nortel LearniT in 2008. We encourage anyone who uses this to feel free to edit and add to it. The One Laptop Per Child (OLPC) community is a great thing and needs developers like your. So enjoy, have fun, and remember, you can be the next to help advance the world technologically and bring the freedom of knowledge to the most distant places on earth. Robert Mayo and Sheng Zhao

(Day 1) Getting to know your OLCP XO Laptop

Short History:

From Wikipedia:

“ The XO-1, previously known as the $100 Laptop or Children's Machine, is an inexpensive laptop computer intended to be distributed to children in developing countries around the world, to provide them with access to knowledge, and opportunities to "explore, experiment and express themselves" (constructionist learning). The laptop is developed by the One Laptop per Child (OLPC) social welfare organization, and manufactured by the Taiwanese computer company, Quanta Computer…

The first early prototype was unveiled by the project's founder Nicholas Negroponte and then-United Nations General Secretary Kofi Annan on November 16, 2005 at the World Summit on the Information Society (WSIS) in Tunis, Tunisia. The device shown was a rough prototype using a standard development board… The first working prototype was demonstrated at the project's Country Task Force Meeting on May 23, 2006.”

The XO: On the Outside (source)

[image: image1.jpg]Speaker/Mic Audio Ports. S

WMicrophone/indicator light Camera/indicator Light

-
USBPort Speaker}

Directionall

P B
Battery Light ~o -

How to upgrade/install the latest version of your Operating System (from the OLPC wiki):

0. Before performing the upgrade, please note that EVERYTHING previously created will be deleted!

1. Read OLPC Update.1 Software Release Notes!

Note: Activities MUST be installed separately.

2. You need a formatted USB flash drive that is larger than 325 MB, and it is better that you format it before copying any files over.

3. Download the following two files from the Internet and put them on the USB flash drive:

http://download.laptop.org/xo-1/os/official/703/jffs2/fs.zip

http://download.laptop.org/xo-1/os/official/703/jffs2/os703.img

· To download those files, plug the USB flash drive into another computer that is connected to the Internet. Right-click (Ctrl-click for Mac) on each of the above two URLs in the browser and choose "Save Target As" ("Save Link As" for Firefox). Save both files to the USB flash drive. Eject/Remove the USB flash drive, and unplug it.

The first file is about 209KiB, and the second file is quite large (about 324 MiB), which might take a while to download.

After you have finished this step, there should be two files on the USB flash drive, the fs.zip file, and the img file.

4. Make sure the XO laptop is OFF. Make sure that the battery is installed, and that you have external (AC) power plugged in as well. Plug in the USB flash drive, and do not unplug it until instructed.

5. With the USB flash drive inserted, power up the laptop while holding down ALL four game buttons on the right side of screen (the four buttons above the power button, and they are marked with O, V, X, and square). Please be sure to press all of them firmly; use two thumbs if that helps.

6. When the screen says 'release the game key to continue', release all four buttons.

7. You will see arrays of colored grids running on the screen. We are now re-writing the laptop with the new operating system.

8. Once done with re-writing, the laptop will reboot itself.

9. Next, the laptop may update the firmware, if necessary, and reboot itself. It will insist on being plugged in and having a battery present if it needs to update the firmware. (You don't have to do anything; just watch.)

10. After you're done with the update, the laptop will boot to the prompt for your preferred user name. You can now remove the USB flash drive, and it is no longer needed.

Install activities

No activities are included in the latest version of the OLPC software, so we'll install them:

1. Power off the XO

2. Remove the "fs.zip" file from your flash drive.

3. Download the activity pack and unzip it to the flash drive (NOT a subdirectory).

4. Insert the USB flash drive and boot the XO. It will display text on a black screen as the activities are installed, after which it will power off.

5. Remove the USB flash drive.

To do the easier but more time consuming net update see the link given in the Day 5 lesson.

(Day 2) Learning how to use the Terminal

Accessing the terminal

 To access the terminal first turn on the OLPC laptop and wait for it to load. After the Home Screen appears you will see the XO logo in the center and the activities below. Look for the activity with an icon that looks similar to this [image: image2.jpg]

 (it maybe a different color depending on what the previous user selected). Clicking on this icon will activate the terminal, which will in turn allow you to acess the editor and view various files on the hard drive.

[image: image3.jpg]Terminal Activity

Activity

Dup dor a'az Mubster!

Ciao, bambini di tutto il mondo!
Hallo, Kinder der Welt!

Hello, children of the world!

[olpc@xo-AE-EC-97 ~1$]

Bonjour, enfants du monde!
iHola, chicos del mundo!
Hallo, kinderen van de wereld!
014, criangas do mundo!

[Terminal Screen]

Commands used in the Terminal

cd : Change directory
ls : List information about file(s)
mv : Move or rename a file
nano : access text editor
mkdir : make a new directory

 For more commands visit the Linux Bash Commands Page

Examples:

Changing the directory to the home directory:
[olpc@xo-05-23-A7 ~]$ cd /home

Listing files:
[olpc@xo-05-23-A7 ~]$ ls

Going up a directory:
[olpc@xo-05-23-A7 ~]$ cd ..

Creating a directory called "name:"
[olpc@xo-05-23-A7 ~]$ mkdir name

(Day 3) HelloWorld Activity - Creating your first Activity

NOTE: It is a good idea to read through this lesson before doing it. Most of the stuff here can be created outside of the OLPC and then transferred using a USB drive. To do this you must follow these steps:

1. create the necessary file system (seen below; HelloWorldActivity.activity... etc) on your USB drive or wherever you are working at.
2. create the necessary pre-coding files seen below in the correct folders (activity.info, setup.py, etc) and then the HelloWorld.py class file
3. Put the folder onto the USB drive if not already there. Start up the OLPC and go to the Home Screen, where you will find the terminal activity. Start a new terminal.
4. Enter in su so that you can become the "super user" (if you already know the name of your drive then you can skip #5)
5. Navigate to the USB drive, which is located under /media and enter ls while in /media to see the name of your drive.
6. to move the directory enter in:
 mv /media/(name of your drive)/HelloWorldActivity.activity /home/olpc/Activities

To test your program from the terminal enter in sugar-launch HelloWorldActivity

Tools (already installed):
 Terminal (to access nano) module
 Python and the pygtk/gtk module

Pre-coding:

 Before you start you must designate or create a folder for your activities. This is a standard process and must be done to create an activity. Start the terminal. A reasonable place and name for the folder could be /home/olpc/Activities. To find out if this folder already exists on the OLPC open a new terminal and change the dirctory to /home/olpc and enter in ls to list the files and folders for that directory. From here you will be able to see if there is a directory titled Activities.

 Now that you have a place for your activities, you must create a subdirectory for any specific activity that you create. For this example, while still in the /home/olpc/Activities directory, we will be using mkdir HelloWorldActivity.activity to create a directory for this specifc project and after that use mkdir activity to create a folder within the one you just created to put your files in.

 Next, we need to define the activity.info file specific for this project. Open nano, while still in the /home/olpc/Activities/HelloWorldActivity.activity/activity directory, and create a new file name activity.info. It is generally in this format:

 [Activity]

 name = Hello World

 service_name = org.laptop.HelloWorldActivity

 class = HelloWorldActivity.HelloWorldActivity

 icon = activity-helloworld

 activity_version = 1

 show_launcher = yes

 Additionally you need to create a .svg file (which will define the icon displayed on the Home Screen). Make sure that you name the file the same way you did in the activity.info (for this project it was activity-helloworld.svg). For this project it will be defined:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd" [

 <!ENTITY stroke_color "#666666">

 <!ENTITY fill_color "#FFFFFF">

]>

<svg xmlns="http://www.w3.org/2000/svg" width="55" height="55">

 <rect x="5" y="5" width="45" height="45"

 style="fill:&fill_color;;stroke:&stroke_color;;stroke-width:3.5"/>

</svg>

To learn how to design an .svg file you can visit the Making Sugar Icons page at the OLPC laptop wiki.

 Once this is done you need to create the setup.py script in the home/olpc/Activities/HelloWorldActivity.activity/ directory. They generally formatted in the same matter as the following:

 #!/usr/bin/env python

 try:

 from sugar.activity import bundlebuilder

 bundlebuilder.start("HelloWorldActivity")

 except ImportError:

 import os

 os.system("find ./ | sed 's,^./,HelloWorldActivity.activity/,g' > MANIFEST")

 os.system("rm HelloWorldActivity.xo")

 os.chdir("..")

 os.system("zip -r HelloWorldActivity.xo HelloWorldActivity.activity")

 os.system("mv HelloWorldActivity.xo ./HelloWorldActivity.activity")

 os.chdir("HelloWorldActivity.activity")

Finally you need to create a directory called MANIFEST (with the caps) in the /home/olpc/Activities/HelloWorldActivity.activity and you are ready to write the code for the program.

 NOTE:
 To figure out how to save, read, cut, paste, etc in nano you can type ctrl + g to view the nano help. There is also a short overview of some useful keyboard shortcuts at the bottom of the editor when opened.

 Directory Structure: HelloWorldActivity.activity
 ---activity
 ---activity-helloworld.svg
 ---activity.info
 ---HellowWorldActivity.py
 ---MANIFEST
 ---setup.py

The Code:

from sugar.activity import activity
import logging

import sys, os
import gtk

class HelloWorldActivity(activity.Activity):

 # This is a callback function. They are used when dealing with
 # interface events. You will see below how it is attached to an object

 # This callback function does not do anything
 # (other then print in the terminal "Hello World!"
 def hello(self, widget, data=None):
 print "Hello World!"

 # This is an event. This specific event is used to emit the
 # "destroy" signal: if true is return then the object will not be
 # destroyed; if false then the "destory" signal is called
 def delete_event(self, widget, event, data=None):
 print "delete event occurred"
 return False;

 #This is another event. It basically ends gtk and the activity.
 def destroy(self, widget, data=None):
 gtk.main_quit()

 # This function is standard. It is used to initilize the program
 def __init__(self, handle):

 print "running activity init", handle
 activity.Activity.__init__(self, handle)
 print "activity running"

 # -- THIS PART IS INCLUDED IN ALL ACTIVITIES --
 #
 # The next 3 lines of code are used to put in the "toolbox"
 # at the top of the activity's screen. This box has the close
 # button, collaborate button, and other handy stuff.
 toolbox = activity.ActivityToolbox(self)
 self.set_toolbox(toolbox)
 toolbox.show()

 # The following is standard for creating a button
 self.button = gtk.Button("Hello World!")

 # Next we set up the click event for the button. The format
 # is standard for all buttons.Here we use the callback function
 # defined earlier; when the button is clicked the callback function
 # "destroy" will be called. If we were to set "hello" as the callback
 # function for the "clicked" event then "Hello World!" would have been
 # printed to the terminal.

 # The first argument is the event, the second argument is the
 # callback function, and the third (or more) function(s) are the
 # arguments for the callback function. Here we do not have any
 # arguments for the callback function.
 self.button.connect("clicked", self.destroy, None)

 # Now Lets add the button to the main window of the activity.
 # This is also standard for adding an object to the main screen
 self.set_canvas(self.button)

End Note: Remember it is very important to stay consistent when naming your activity and directory.

(Day 4) HelloWorld Activity Reloaded - Editing the HelloWorld Activity

 Now that you know how to create an activity and navigate through the directory system on the OLPC laptops it is time to learn how to edit an activity. We will revisit the HelloWorldActivity (which can be edited on the laptop or on the computer that you are working on).

 In this lesson we will add in a few more UI objects to make the program a little more exciting. This is a bit advance but if you have done the lesson on Day 3 and have some programming background then you should be fine.

What's going to be added (by levels to the canvas):
 -- Canvas
 -- Vertical Box
 -- Text Box
 -- Button 1
 -- Button 2

 Now open the editor as we did before in the previous lesson using nano. Open up the HelloWorldActivity.py class file that we were working on earler. To create the new objects we will be using: gtk.VBox, gtk.TextView, gtk.TextBuffer , gtk.Button.

As seen before, the standard way of creating a new widget (UI object) is:

self.(NAME OF OBJECT) = gtk.(CONSTRUCTOR OF OBJECT)

So, to create a new Vertical Box (gtk.VBox), for example, it would be:

self.myVBox = gtk.VBox()

Now create the 3 objects that you will need for this in the place that we created the button in the previous lesson:

 ...
 self.button = gtk.Button("HelloWorld!")
 self.destroyMe = gtk.Button("Destroy Me!")
 self.myVBox = gtk.VBox()
 self.myTextBuffer = gtk.TextBuffer()
 self.myTextView = gtk.TextView(myTextBuffer)
 ...

Now that we have created these objects you must be wondering what they will be used for. In this lesson we will have a TextBox that will have "HelloWorld!" added to it's text when the "HelloWorld!" button is pressed. The TextBox and button will be placed in the VBox container and that will be placed on the canvas of the activity. To have this happen Events and callback functions are very important. We will start by creating a callback function for the button. If you recall our callback in the previous lesson only printed "Hello World!" to the terminal. This time we will go back to that function and use the methods of the TextBuffer.

 def hello(self, widget, data=None):
 self.text=self.myTextBuffer.get_text(self.myTextBuffer.get_start_iter(), self.myTextBuffer.get_end_iter())
 self.text = self.text + "Hello World!"
 self.myTextBuffer.set_text(self.text)
 self.myTextView.set_buffer(self.myTextBuffer)
 print "Hello World!"
...

We now need to attach this to the "HelloWorld" button's (self.button) "clicked" event and attach destroy to the "destroy" button's (self.destroyMe) "clicked" event. Other then that, we need to add the widgets to the VBox and the VBox to the canvas of the activity.

...
 self.button.connect("clicked", self.hello, None)
 self.destroyMe.connect("clicked", self.destroy, None)

 self.myVBox.add(self.button)
 self.myVBox.add(self.destroyMe)
 self.myVBox.add(self.myTextView)

 self.set_canvas(myVBox)
...

After this we me to tell it to show the widgets.

...
self.show_all()
...

Now that we are done with the editing close nano and enter in sugar-launch HelloWorldActivity to see the changes that we made.

(Day 5) HELP!

 On this day I will introduce you to a few sites and places that have information that will be helpful for you in the future. Some of them are advanced, however, after learning from the previous lessons you should be ready to interact with and figure them out.

P2P Help (Person to Person):
 The best place to start off would be the Freenode #olpc-help irc channel or #sugar channel. If you do not already have a program for irc or do not want to download a program then the best place to would be mibbit. At either the #olpc-help or #sugar channels you will be able to talk to a real people about your issue and you usually, in time, get an answer.

(Adv) Updating your OLPC via Internet Connection:

[from wiki.laptop.org - olpc-update]

To manually upgrade your machine when a new version is released:

1. Plug the XO into an electrical outlet

2. Connect to the internet. If you are upgrading because you have a WPA hotspot at home, you might want to go to a Public Hotspot to connect to the internet for an online upgrade, such as a T-Mobile hotspot or a local libary.
Firewall note: olpc-upgrade requires outgoing TCP PORT:873 to be unfiltered by the hotspot's firewall. In otherwords if the laptop has functional-access to the internet but olpc-upgrade returns the message "I don't think you're connected to the internet." check the hotspot's firewall is not blocking the outgoing TCP Port 873.

3. Open the Terminal Activity [image: image4.png]

or a console and type the following (press the Enter key after each line):

su -l
olpc-update build-number

For example:

 su -l

 olpc-update 703

Where

· in su -l, it's lower case "L", not the number "1"

Note: su does not work in terminal with some builds which require a password until you become "root". You can become "root" by pressing the "#_" icon at the top of the terminal screen. In some other builds you may need to type "sudo olpc-update build-number" instead.

· build-number is the number of the build to be updated to.

· The latest stable build is 703. [as of 7/24/08]

· Note that in builds 700 and above, you must install activities separately. See Update.1 Software Release Notes for details.

If the update program successfully connects to the update server some messages should display

Downloading contents of build build-number

Updating to version hash xxxx

Making clean /versions/updates/...

Trying irsync_pristine update from rsync://updates.laptop.org/build-build-number

- Cleaning tree.

- Fetching contents.

- Performing incremental rsync.

Verifying update.

Installing update in /versions/{pristine,run}/xxxx

Where xxxx is a version-specific number.

This process may take more than thirty minutes. When the process is complete, you need to reboot, unless you supplied the -r option to olpc-update.

When the XO restarts the update will be complete.

Website Help:

 There are many websites you can use when you are developing activities on the XO.

· The OLPC Wiki - OLPC This is the place you can find most of the information about OLPC.

· PyGTK 2.0 Tutorial You can learn and reference this site anytime you got stuck on GTK.

· OLPC laptop Forum You can find lots of help here and if your problem has already been reported you can easily search for the solution.

· Python Library Reference If you are having trouble or can not remember some of the basics (or advanced stuff) from Python then this site will be helpful.
© 2008 Nortel LearniT

 For More Information Visit

www.NortelLearniT.org/onelaptopperchild

© 2008 Nortel LearniT

www.NortelLearniT.org

