PROBLEM 1.
LETS HACK THIS !!!
Hi friends lets talk something about Hacking as this is Hackety hack. Have you ever thought of breaking somebody’s password? Today I will be telling you that.

The situation is like; you know that your friend’s password is made up of the alphabets

{ J, O, H, N }, but you don’t know the order in which it is used and you want his password. Your task is to hack his password. You have been only given a computer to do that.
HINT:

Print all the permutations that can be made out using these 6 alphabets. And constantly feed the output to the email id whose password is to be known. So you have to write a program to generate all the permutations of these alphabets.
CODE:

This program is written in C++.

Compiled using Borland 5.5 C++ compiler.

#include <stdio.h>

#include<conio.h>

#include<dos.h>

/* function to swap array elements */

void swap (char v[], int i, int j)

{

char t;

t = v[i];

v[i] = v[j];

v[j] = t;

}

/* recursive function to generate permutations */

void perm (char v[], int n, int i)

{

/* this function generates the permutations of the array

 * from element i to element n-1

 */

int
j;

/* if we are at the end of the array, we have one permutation

 * we can use (here we print it; you could as easily hand the

 * array off to some other function that uses it for something

 */

if (i == n)

{

for (j=0; j<n; j++) printf ("%c ", v[j]);

printf ("\n");

} else

/* recursively explore the permutations starting

 * at index i going through index n-1

 */

for (j=i; j<n; j++) {

/* try the array with i and j switched */

swap (v, i, j);

perm (v, n, i+1);

/* swap them back the way they were */

swap (v, i, j);

}

}

/* little driver function to print perms of first 5 integers */

int main ()

 {

char v[]="JOHN";

int i;

perm (v,4,0);

getch();

return 0;

 }
OUTPUT:

[image: image1.png]

Fig 1. Output for the above program

PROGRAM 2.
CHESS PUZZLE
My friend who is very good at chess bets me (not so good at chess) to solve a classical puzzle of positioning eight queens on an 8*8 chessboard such that no two queens threaten each other. This means that no two queens may lie on the same row, column or diagonal.
Please help me as I cannot do this on my own.
You have to write a program to print a chessboard positioning 8 queens according to the puzzle.

HINT :

Use backtracking technique and then check each case that does it satisfy the requirement.

CODE :
This program is written in C++.

Compiled using Borland 5.5 C++ compiler.

#include<stdio.h>

#include<conio.h>

#include<process.h>

/* This is the structure used to save the status of every block of chess if it is affected by the queen or not

*/

struct b

{

int p;

int hit;

};

typedef struct b node;

/* This function traverse every possible status of the chess with 8 queens on it.

 And then searches for a status that satisfies the given condition.

 Using nested for and if loops.

*/

void reset(node a[8][8])

{

int i , j , k , l;

for(i=0;i<8 ;i++)

for(j=0;j<8;j++)

a[i][j].hit=0;

for(i=0;i<8;i++)

for(j=0;j<8;j++)

{

if(a[i][j].p==1)

{

for(k=0;k<8;k++)

for(l=0;l<8;l++)

{

if((i-j)==(k-l))

a[k][l].hit=1;

if((i+j)==(k+l))

a[k][l].hit=1;

if(k==i)

a[k][l].hit=1;

if(l==j)

a[k][l].hit=1;

}

}

}

};

/* This function prints the chessboard once the solution of the puzzle is found
This uses two nested for loop to print the chess board using ‘*’ for an empty position and ‘1’ for a queen.

*/
void print(node a[8][8])

{

int i, j;

for(i=0;i<8;i++)

{

for(j=0;j<8;j++)

{

if(a[i][j].p==1)

printf("1 ");

else

printf("* ");

}

printf("\n");

}

getch();

};

void solve(node a[8][8], int count)

{

int i,j;

if(count==8)

{

print(a);

exit(0);

}

else

{

for(i=0;i<8;i++)

for(j=0;j<8;j++)

{

if((a[i][j].p==0)&&(a[i][j].hit==0))

{

a[i][j].p=1;

reset(a);

solve(a,count+1);

a[i][j].p=0;

reset(a);

}

}

}

};

/* Small main code to call the function that is created */

int main()

{

int i, j;

clrscr();

struct b c[8][8];

for(i=0;i<8;i++)

for(j=0;j<8;j++)

{

c[i][j].p=0;

c[i][j].hit=0;

}

solve(c,0);

return 0;

}

OUTPUT:
[image: image2.png]T T

I
TR
Kk A KK
KKK AR A
T
KAk Kx K

18w x s xox xx

Fig 2. Output for the 8 Queen Puzzle.
